Antiderivative and Area

Liming Pang

Antiderivative 1

Definition 1. A function F(x) is called an antiderivative of f(x) on an interval I = (a, b) if F'(x) = f(x) on this interval.

Example 2. If $f(x) = x^2$, then $F(x) = \frac{x^3}{3}$ is an antiderivative of f(x).

Also note that for any constant C, $F(x) = \frac{x^3}{3} + C$ is also an antiderivative of f(x).

The above observation is true in general:

Proposition 3. If F(x) is an antiderivative of f(x) on an interval I, then F(x) + C is also an antiderivative of f(x) on I for any C, and any antidetivative of f(x) on I is of this form.

The antiderivatives of some basic functions are given below:

Function	$x^n, (n \neq -1)$	$\frac{1}{x}$, $(x>0)$	e^x	0
Antiderivative	$\frac{x^{n+1}}{n+1} + C$	$\ln x + C$	$e^x + C$	С

Example 4. Find the most general antiderivative of $f(x) = \frac{1}{x^2}$, x > 0

If $F(x) = -\frac{1}{x}$, we see $F'(x) = \frac{1}{x^2}$. So the most general antiderivative is of the form $F(x) = -\frac{1}{x} + C$.

Proposition 5. If F(x) is an antiderivative of f(x) and G(x) is an antiderivative of g(x), then:

- (i). cF(x) is an antiderivative of cf(x) for any constant c
- (ii). $F(x) \pm G(x)$ is an antiderivative of $f(x) \pm g(x)$

Example 6. Find f if $f'(x) = e^x + 4x$ and f(0) = 3.

f is the antiderivative of f', so f is of the form $f(x) = e^x + 2x^2 + C$ for some constant C.

 $3 = f(0) = e^0 + 2 \times 0^2 + C = 1 + C$, we get C = 2, so we conclude $f(x) = e^x + 2x^2 + 2$

Example 7. Find f(x) if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, f(1) = 1.

$$f'(x) = 4x^3 + 3x^2 - 4x + C_1$$
, and $f(x) = x^4 + x^3 - 2x^2 + C_1x + C_2$.

$$\begin{cases} 4 = f(0) = C_2 \\ 1 = f(1) = C_1 + C_2 \end{cases}$$

We get
$$C_1 = -3$$
 and $C_2 = 4$, so $f(x) = x^4 + x^3 - 2x^2 - 3x + 4$

In general, when the function is more complicated, it is harder to see what its antiderivative is directly. For example, $f(x) = xe^x$. We will see that the question of finding antiderivative can be transformed to that of integration, thanks to the Fundamental Theorem of Calculus.

2 Area

We are going to define the concept of area for a region bounded between the curve of a function f(x) and x-axis on an interval [a, b].

It seems not easy to come up with a general formula for defining the area, but we can start by thinking about what we know:

If the function is a constant function $f(x) \equiv C$ on [a, b], then we know what the area is: just the area of the corresponding rectangle, C(b-a).

This motivates us the following construction:

Given a natural number n, we divide [a, b] into n pieces, each of which has length $\Delta x = \frac{b-a}{n}$, so the endpoints of the small pieces are

$$x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, ..., x_n = a_n \Delta x = b$$

Now considering the rectangles with base $[x_{i-1}, x_i]$ and height $f(x_i)$ for all $1 \le i \le n$. We sum up the areas of these rectangles:

$$A = f(x_1)\Delta x + ... + f(x_n)\Delta x = (f(x_1) + ... + f(x_n))\Delta x$$

As $n \to \infty$, we see the region covered by these small rectangles converges to the region between the graph of y = g(x) and x-axis.

So we make the following definition:

Definition 8. The area A of the region that lies under the graph of a continuous function f and above x-axis on the interval [a, b] is the limit

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} (f(x_1) + \dots + f(x_n)) \Delta x$$

It can be proved that if we consider the rectangles above $[x_{i-1}, x_i]$ with height $f(x_{i-1})$ instead of $f(x_i)$, then going through the above procedures will lead to the same result, i.e.

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} (f(x_0) + \dots + f(x_{n-1})) \Delta x$$

Now we introduce a new notation to sum up a sequence: If $a_1, a_2, ..., a_n$ is a sequence, we will denote their sum by

$$\sum_{i=1}^{n} a_i = a_1 + \dots a_n$$

So we can write

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$$

Example 9. Compute the area A of the region that lies below $f(x) = x^2$, above x-axis, and on the interval [0,1], using both R_n and L_n methods. (We need to make use of the algebraic formula $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$)

$$\Delta x = \frac{1-0}{n} = \frac{1}{n}$$
, so $x_0 = 0, x_1 = \frac{1}{n}, ..., x_n = \frac{n}{n} = 1$.

$$R_n = \sum_{i=1}^n f(x_i) \Delta x_i = \sum_{i=1}^n (\frac{i}{n})^2 \Delta x_i = \frac{1}{n^3} \sum_{i=1}^n i^2 = \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^2}$$

So

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} = \lim_{n \to \infty} \frac{1}{6}(1+\frac{1}{n})(2+\frac{1}{n}) = \frac{1}{3}$$

Next we use L_n to compute:

$$L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x_i = \sum_{i=0}^{n-1} (\frac{i}{n})^2 \Delta x_i = \frac{1}{n^3} \sum_{i=0}^{n-1} i^2 = \frac{1}{n^3} \frac{(n-1)n(2n-1)}{6} = \frac{(n-1)(2n-1)}{6n^2}$$

So

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{(n-1)(2n-1)}{6n^2} = \lim_{n \to \infty} \frac{1}{6}(1-\frac{1}{n})(2-\frac{1}{n}) = \frac{1}{3}$$